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Abstract
A brief qualitative mapping is given between austenite, tweed and twinned phases of martensite
alloys and corresponding paramagnetic, spin glass and periodic phases in spin glass alloys.

This paper is dedicated to John Pendry in celebration of his 65th birthday.

1. Introduction

Ferroelastic martensitic alloys show discontinuous phase
transitions as the temperature is lowered from a high-
temperature high-symmetry phase to a low-temperature phase
of twinned lower-symmetry variants: for example from an
austenite phase with cubic symmetry to an ordered pattern
of stripes of complementarily distorted tetragonal twins [1].
Often these two phases are separated by an intermediate phase,
known as ‘tweed’, in which the tetragonal twins are arranged in
a more random way [2]. The lower-temperature phases exhibit
interesting shape-memory and aging behaviour [1, 3].

In this paper we present a simple caricaturization of these
phases and their transitions and features, in terms of simple
spin glass alloy models. The suggestion that tweed is an
analogue of a spin glass and a description of these systems in
terms of a spin glass model is not new [4–6], but the modelling
here is somewhat different and, hopefully, instructive. It also
suggests interesting new models (or variations) for study by
spin glass physicists.

2. Modelling

The origin of the structural transitions above is viewed as
due to the frustrated interplay of competitive interactions of
different ranges and anisotropy [8], combined with quenched
disorder due to statistical inhomogeneity in the alloy make-
up [4]. The origin of the competing forces is elastic but,

1 Permanent address.

rather than retaining the technical complications of a complete
elastic analysis, we shall here pursue a much simpler mean-
field caricaturization in terms of effective ‘spins’, with the aim
of conceptual simplification and qualitative explanation and
prediction.

Our starting point is to separate the local and effective
interactive features of the martensitic transition. The
transitions from austenite to tetragonal are observed as first
order and thus we may view the local propensity to either cubic
or tetragonal symmetry as describable by a first order Landau
transition.

2.1. Two dimensions

In a three-dimensional cubic system there are three mutually
orthogonal tetragonal local distortion orientations. However,
for simplicity we shall initially consider a two-dimensional
system in which there are only two possible rectangular
variants, orientated with their longer axes in the x or the y
direction. They may be characterized by a variable φ whose
magnitude indicates the strength of tetragonal distortion and
whose sign indicates which of the two orientations it is in;
explicitly, φ is the deviatoric strain φ = (ε11 − ε22)/

√
2, where

εi j is a component of the Lagrangian strain tensor [9]. The
local situation can thus be described in terms of a local free-
energy function

F0 =
∑

i

[Ai(T )φ2
i − Bi(T )φ4

i + Ci (T )φ6
i ] (1)

where B and C are both positive and their temperature
dependence is not of qualitative consequence, while the A(T )
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change sign from positive to negative as the temperature T is
reduced. i labels the local region, and A, B , and C are given
subscripts i to allow for quenched heterogeneity. Minimizing
the free energy leads to a transition from φi = 0 to φi = ±φi

∗
as T is reduced. φ = 0 is interpreted as the locally cubic
structure and the ±φ∗

i as the two tetragonal distortions. The
interesting behaviour arises from the inhomogeneity in the
passage of the Ai(T ) across zero. The signs of B and C are
chosen to reproduce the observed first order transitions. The i -
and T -dependences of the φ∗

i are not of qualitative importance
and so will be ignored henceforth.

In a further simplification we may re-write F0 as an
effective ‘spin Hamiltonian’ [7].

H0 =
∑

i

Di (T )S2
i ; Si = 0,±1 (2)

with S = 0 corresponding to a local cubic structure,
S = ±1 corresponding to the two orthogonal rectangular
distortions and the Di changing from positive to negative as
the temperature T is reduced, emulating the sign-change of
Ai(T ). The ground state has Si = 0 (cubic) for Di � 0 and
Si = ±1 (tetragonal) for Di � 0. Below we shall continue
to investigate the effect of the variation of the Di but drop the
explicit reference to their temperature dependence.

Let us now add the effective interactions between the
rectangular variants at different locations. These are also
induced by elastic effects, via compatibility constraints [9], but
can be modelled by an effective spin interaction

HI = −
∑

(i j)

J (Ri j)Si S j (3)

where (i j) indicates a pair of sites, Ri j is the separation of
‘sites’ (i, j) and J (R) has a short-range attractive part (arising
from the energetic costs of strain gradients) and also long-range
contributions of ± sign depending upon the orientation of Ri j ,
together causing frustration [9]2.

Overall the behaviour can be considered as determined by
the total effective ‘Hamiltonian’, H = H0 + HI , together with
appropriate boundary and further thermal effects.

2.1.1. Homogeneous case. It is instructive to consider first
the homogeneous case, with all D equal. At high temperatures,
where the D are all positive, the H0 term alone would lead
to all Si = 0, corresponding to austenite, whereas for all
D negative H0 alone yields an Ising Si = ±1 behaviour
with the HI term ordering the rectangular distortions so as to
minimize the overall energy. The very experimental existence
of twins demonstrates a type of ‘anti-ferromagnetism’; its
specific form is a consequence of the combination of the
long-range decay and the anisotropic variation of sign of the
interactions. More specifically, the long-range interaction in
two dimensions behaves dominantly as [8]

J (Ri j) ∝ − cos 4θi j/|Ri j |2 (4)

2 Strictly we should also add short-range terms penalizing the juxtaposition
of Si = 0 and Si = ±1, for example of the form K

∑
nn S2

i (1 − S2
j ), and

favouring neighbouring S = 0, for example −L
∑

nn(1 − S2
i )(1 − S2

j ).

where θi j is the polar angle of Ri j . The anisotropic variation
is thus ferromagnetic along the π/4 and 3π/4 directions and
antiferromagnetic in the 0 and π/2 directions. Minimization of
the two energetic terms immediately suggests the formation of
alternating twinned stripes of internally ferromagnetic ‘spins’,
the stripes all oriented along either π/4 or 3π/4 but with the
rectangular variants alternating from stripe to stripe between
vertical and horizontal long axis. This order is so as to take
advantage of the ferromagnetic interactions along the in-plane
direction while minimizing the cost of the antiferromagnetic
interactions along the x and y directions. If we denote the
energy contributions (i) along the direction of the twin stripes,
E1, (ii) perpendicular to these stripes, E2, (iii) along x , E3

and (iv) along y, E4, then we find E1 and E2 negative, with
|E1| � |E2| ≈ |E3| = |E4|.3 The balances of gains and losses
of energy and entropy, including boundary effects, determine
optimal twin widths.

In fact, it is unnecessary for the D to be negative for this
twinned order to occur, since the energy gained from HI by the
ordering of the Si = ±1 can (and typically does) outweigh the
costs associated with H0 even for positive D, up to a critical
value, in analogy with the phenomenon of induced moment
behaviour in certain magnetic systems [10]. The transition
from ground state Si = 0 to Si = ±1 would then be first
order. If the D variation were independent of thermal effects
and of the inter-site ordering, this qualitative feature would
continue as the temperature was increased, until a tricritical
point was reached. Note, however, that in the picture being
painted here temperature plays two roles, one in effectively
tuning D and the other in the cooperative thermal ordering of
the effective ‘spins’. There is no reason for the temperature
scales, or ‘transition temperatures’, of the two effects to be
simply related, but experimental experience suggests that in
practice a tricritical temperature is not normally reached while
D(T ) is negative.

2.1.2. Inhomogeneous case. Allowing for inhomogeneity
among the Di permits the possibility of an intermediate
ordered phase between austenite and periodically twinned
phase, as will now be shown.

For preliminary mental orientation, let us first consider a
situation in which the Di take just two values randomly, one
large and positive and the other large and negative. The model
Hamiltonian,

H =
∑

i

Di (T )S2
i −

∑

(i, j)

J (Ri j)Si S j : Si = 0,±1 (5)

is then recognized as essentially analogous to that for a site-
disordered Ising spin glass of magnetic and non-magnetic
atoms,

H = −
∑

(i j)

ci c j J (Ri j)Si S j : Si = ±1, ci = 1, 0

(6)
3 Along a stripe all the interactions are ferromagnetic and so add coherently;
perpendicular to the stripe planes the alternating-variant planes interfere
destructively and the long range of the interaction leads to a significant
reduction of the binding energy in this direction as compared with in-plane;
in the 0 and π/2 directions there is a combination of both long-range
antiferromagnetic interaction and plane spin sign alternation; the short-range
ferromagnetic interaction favours planes of more than single spin width.
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where the ci = 1 indicate magnetic sites, ci = 0
non-magnetic; ignoring bootstrap effects, the magnetic sites
correspond to those with Di negative and the non-magnetic
sites to Di positive. The detailed make-up of attractive
and repulsive forces is rather different from those of either
conventional metallic or conventional semiconducting spin
glass systems [13], but experience has taught that these
details are not normally crucial to the existence of a spin
glass phase. (The energy scale of the present pseudo-spin
system is also different from that of real spin systems: much
higher.) Based on this analogy one is led to conclude that the
ground state will be ‘antiferromagnetic’/twin-stripe-ordered,
‘spin glass’/tweed or ‘paramagnetic’/austenite depending upon
the relative concentration of sites with the two signs of
D: twin ordered for a sufficient concentration of negative
D; spin glass beneath this critical concentration and above
a lower percolation–frustration threshold, beneath which no
cooperative order is possible4.

A more realistic distribution of D would be a continuous
but bounded one: say of width �D around a mean of D0,
with D0 effectively decreasing monotonically (across zero)
with reducing temperature T of the underlying martensitic
alloy. At high enough D0 the ground state would be non-
magnetic Si = 0 (austenite). Clearly, any site whose D-
value is negative would contribute an effective magnetic site
to (6) and consequently at low enough D0 all sites would be
‘magnetic’ and twin ordered. But for sufficient finite �D an
intermediate spin glass (tweed) state may be expected.

Let us first consider the case in which bootstrapping
effects are ignored. Then the effective magnetic concentration
would be equal to the number of sites with negative D
and cooperative order would onset at the corresponding
lower critical concentration of a cooperative phase of (6).
For a continuous D-distribution this concentration would
grow continuously as D0 is reduced, so that the transition
from non-magnetic (austenite) will be to spin glass via a
continuous transition. Eventually, as D0 is reduced further,
the concentration will reach that at which twin order becomes
preferable to spin glass and a further transition would occur.

However, when the effects of bootstrapping of moments
are included both these transitions could become first order,
the gain in interaction binding energy overcoming the cost
of finite Si on certain sites even when their corresponding
Di is still positive, up to a self-consistently determined Dc .
This is possible for austenite to tweed whenever the low
concentration limit for tweed order of (6) is non-zero. The
tweed–twin transition will be first order when at the critical
concentration separating tweed and twin phases of (6) the slope
of the transition temperature versus concentration of the twin
phase is sufficiently greater than that in the tweed phase that a
jump in effective concentration (due to discontinuous moment
formation) becomes energetically advantageous. Of course,

4 Note that the existence of a finite lower threshold to paramagnetism depends
on the character and range of the longer-ranged interactions. If ferromagnetic
and extending to infinite range there would be no zero-temperature threshold
while with isotropic antiferromagnetic interactions it is believed that there
is no long-range order in the limit of small concentration, even when these
interactions are long ranged [11, 12]. Of course, at finite temperature
(6) always has a lower concentration ordering threshold.

if the statistical inhomogeneity, and therefore �D, is too
small, the tweed phase could be bypassed in the discontinuous
‘moment’ jump.

2.2. Symmetry-breaking fields

Above we have not discussed explicitly the inclusion of effects
breaking the symmetry between alternative variants. These can
occur due to either external or internal stresses and would add
terms of the form

Hstress = −
∑

i

hi Si (7)

with contributions to the hi either externally imposed or a
consequence of internal inhomogeneities favouring particular
local orientations. Thus one could extend the Hamiltonian to
include these terms and model with

hi = himposed
i + hrandom

i (8)

with the hrandom
i randomly chosen from some distribution

P(hrandom).

2.3. Three dimensions

Let us now turn to three dimensions, the more normal
dimensionality of martensitic systems. Again, first order
transitions from high to lower local symmetry are observed
experimentally: in classic cubic systems with the two types
of rectangular lower-symmetry local variants of the two-
dimensional example replaced by three tetragonal variants,
orientated orthogonally along the x, y and z axes. Again,
the interaction terms lead to cooperative spatial ordering of
the variants. At low temperatures this ordering is again of
complementary twins, implying again long-range interactions
of oscillating sign as a function of angular orientation [9].
Both of these features can be emulated by extensions of the
simple spin model used above or by an axis-director analogue
of it. For example, the three tetragonal variants can be
described analogously to liquid-crystal (axis-)‘directors’, with
interactions between them analogous to those in quadrupolar
glasses [14]. Local inhomogeneities again lead to different
local propensities to cubic (zero director) or tetragonal (finite
director) and hence to random variations in the effective
concentration of directors. This in turn can be anticipated
to permit the insertion of a quasi-random three-dimensional
tweed phase between austenite and twinned phases. A
possible model formulation would be to employ the effective
Hamiltonian

H =
∑

i

Di (T )|Si|2 −
∑

(i, j)

|Si ||S j |J (Ri j)(2(Si ·S j )
2 − 1)

(9)
where the spins are restricted to Si = 0, x̂, ŷ or ẑ and
the last three options are respectively unit vectors in the
x , y and z directions. Another possible description would
be in terms of a four-state Potts spin glass [15] in a field
and with anisotropic exchange: one of the Potts dimensions
corresponding to austenite, the other three to the orthogonal
variants, with the exchange interactions only among these latter
three dimensions.

3



J. Phys.: Condens. Matter 20 (2008) 304213 D Sherrington

3. Properties

Among the most interesting properties of martensitic systems
is that of shape memory. In so-called ‘one-way shape memory’
a system which is forged into a particular shape at a high
temperature, in the austenite phase, cooled and then distorted,
will regain the original shape on reheating. This can be
explained easily from twinning alone along with the feature
of ease of distortion in the twinned phase [1]. The initial
distortion corresponds to the imposition of a boundary (at
whatever necessary energy cost). Cooling alone retains this
shape, with the twin stripe-widths accommodating it. In the
twinned phase, however, the shape is easily modified at low
energy cost by adjusting the individual twin section widths by
moving the intertwin boundaries. Reheating removes the twins
and their boundaries and the sample regains the originally
imposed shape. There is however often observed another
type of shape memory, ‘two-way-shape memory’, in which
the system remembers its history both on heating and on
cooling [16]. This is not readily explainable by twinning alone.
However, such two-way memory is a characteristic feature of
spin glasses [18, 27] and hence is attributable to tweed [17].
The present model suggests a way to model it minimally, but
further pursuit of its study is deferred to a future paper.

Another of the characteristic features of a spin glass is
preparation dependence, as illustrated in a difference between
the susceptibility as measured by first cooling from the
paramagnetic state and then applying a field (ZFC: zero-
field cooling) and that observed by first applying the field
and then cooling (FC: field cooling), demonstrating non-
ergodic behaviour over experimental times. There should
be a corresponding difference in uniaxial compliances (or,
inversely, compressibilities) in tweed measured along principal
axes5. This effect is a consequence of the multiplicity of
metastable states of spin glasses, their non-trivial evolution
under changes of control parameters (such as temperature or
applied field) and consequential slow dynamics in exploring
all of phase space [31, 32]. It should however also be noted
that the normal fluctuation–dissipation relation does not hold
for spin glasses [18] and a simple measurement of the sound
velocity will correspond more to the ZFC situation. However,
variations can be expected as a function of frequency.

We might also note in passing that the full Gibbs
susceptibility of a mean-field spin glass (and, at least to a good
approximation, the FC susceptibility of a real spin glass) is
independent of temperature, and hence one might anticipate
a similar independence in a martensitic alloy throughout the
tweed regime.

Aging behaviour in glasses has a long history [19] and
similar aging features should exist in tweed. More recent
work on spin glasses has shown how many aging quantities
can be expressed as a function of the ratio of times t/tw ,
where tw is the time following a rapid quench and t is time

5 Note that uniaxial compression is needed so that the effective field has a
different energetic consequence for the different types of tetragonal distortion;
isotropic compressibility would not have the same effect since it is an
‘irrelevant field’ for separating tetragonal twins. Neither would compressibility
at π/4 to the tetragonal variant long directions.

of measurement, for both t and tw large. A corresponding
systematic exploration of tweed would seem to be called for.

Another intriguing characteristic of conventional spin
glasses is rejuvenation [27], whereby a system relaxing/aging
in an external dc field appears to start relaxing/aging anew
when this field is suddenly changed, ignoring its previous
aging; this feature is, for example, apparent in an observation
of the ac out-of-phase susceptibility. Again, one would expect
an analogue for tweed.

3.1. Relation to prior models

The models considered above can be viewed as extensions
of the Blume–Capel [20] or Blume–Emery–Griffiths (BEG)
models [21]; in two dimensions to allow for randomness of
the local anisotropy term and long-range and orientational
sign variation of the exchange interaction with separation Ri j ,
and in three dimensions also to allow for Potts-like director
replacement of the BEG S = 1 Ising spins. A complementary
discrete random field Potts modelling of elastic systems has
recently been proposed by Cerruti and Vives [22].

4. Soluble models

Although the physical conclusions indicated above seem
inevitable, the actual models introduced are almost certainly
not completely soluble, as neither is the corresponding
equation (6) of an even-simplified conventional site-disordered
spin glass. In theoretical and simulational studies of
conventional spin glasses one usually replaces site disorder
with bond disorder P(Ji j ), as suggested by Edwards and
Anderson in their classic seminal paper [23]. Taking the
mean Ji j to be non-zero [24] permits competition (and
transition) between two types of frozen phase, spin glass and
ferromagnet (or anti-ferromagnet). An exactly soluble version
is the infinite-range extension of Sherrington and Kirkpatrick6

[5, 25]. A tempting analogue in the present case is a variant of
the Ghatak–Sherrington model [28] (see also [29, 30]), with

HGS =
∑

i

Di S2
i +

∑

(i, j)

Ji j Si S j : Si = 0,±1 (10)

where the Ji j are independently distributed according to some
P(Ji j ), including allowance for non-zero mean, and the
Di also independently according to some other distribution
PD(D). Such a model should be straightforwardly soluble
by the methods developed for the SK model and its
extensions [31, 32] but it would miss many of the crucial
features of the martensitic systems (including the feature
of easily malleable twin planes). Consequently computer
simulation of the model system seems to be the sensible next
direction to pursue at the theoretical level.

Conclusions

A simple spin-glass-like modelling has been presented,
emulating key ingredients of martensitic alloy transformations.

6 SK can be extended to cover antiferromagnetic ordering via the introduction
of two sublattices as in [26].
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Qualitative considerations and analogies have been used to
suggest that tweed should be viewed as a spin glass, echoing
a message originally expressed, via a different formulation,
by Kartha et al [4]. Analogies with aging, rejuvenation and
memory of spin glasses suggest explanations and experimental
investigations of the behaviour of martensitic alloys. The study
also exposes a new type of spin glass Hamiltonian worthy of
further investigation.

This brief paper has concentrated on devising simple
models and considering their likely thermodynamic phases
and transitions, together with some anticipated properties by
analogy with more conventional spin glasses. These need
further more rigorous consideration, but so also does the
dynamics of these systems viewed within the simple spin-
Hamiltonian modelling. There has already been some study
of the dynamics within a fuller elastic strain formulation
without alloy inhomogeneity [8] (i.e. without imposed disorder
quenched into the controlling equations) and for a different
simple model with quenched disorder [33]. A start has also
been made in terms of computer dynamical iteration of the
mean-field solution for the two-dimensional homogeneous-
Hamiltonian case [34]. However, a fuller examination along
the lines of those employed for more conventional spin glasses
is now called for, with special attention to the metastabilities
that characterize systems with first order transitions; note that
conventional spin glasses have thermodynamically continuous
transitions even though soluble model systems with p >

2-spin interactions or with interactions lacking symmetry
of definiteness (such as Potts or quadrupolar) spins have
discontinuous replica symmetry breaking (DRSB) spin glass
onset. We might also note that structural glasses, which
have no imposed quenched localized disorder in their
Hamiltonians, have quasi-transition temperatures Tg (glass
transition high viscosity) and Kauzman temperatures TK

(temperature at which the entropy difference between liquid
and glass extrapolates to zero) analogous to the dynamical and
thermodynamic glass transitions of a DRSB model. Hence it
is also possible that an analogous dynamically self-generated
quasi-disorder could occur in martensites [34]. Simple
modelling such as introduced here might provide a useful
laboratory within which to probe the physics.
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